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The main aim of the current study was to investigate the Chinese patient having Primary ciliary dyskinesia 
(PCD). In the current genetic study, a Chinese patient was enrolled who was clinically diagnosed with 
PCD, and his family members were inquired for pedigree analysis. Different clinical and radiological tests 
were also performed. While genetic analysis, including Whole Exome (WE) and Sanger Sequencing for 
variant identification, was done. In silico functional analysis and Transmission electron microscopy (TEM) 
analysis were also performed. A 39 year old patient exhibited scoliosis and infertility. Genetic analysis of 
the patient identified a novel homozygous missense variant, NM_018139.3, c.899T>G, p.(Leu300Arg) in 
the DNAAF2 gene. Later, TEM analysis found that semen flagella showed defects in the outer dynamic 
arm (ODAs) and inner dynamic arms (IDAs). Sperm morphological analysis also showed abnormal, bent, 
coiled, and short-size flagella. His sperm motility was zero (0%). However, his hormonal profile was in 
reference range. Moreover, in silico analysis also confirmed the pathogenicity of the variant.The similarity 
index of superimpose 3D structure of wild-type and mutant DNAAF2 protein was just 14.81%. A current 
genetic study identified a homozygous variant of DNAAF2, which results in infertility in a Chinese male 
patient. This study will also assist in genetic counseling of Chinese families at risk of PCD.

INTRODUCTION

Primary ciliary dyskinesia (PCD, MIM: 244400) is 
known as an orphan disease, which is a hereditary 

disease having major phenotypes of permanent lung 
damage, resulting in respiratory failure, congenital heart 
abnormalities, unusually positioned inner organs along 
with infertility (Lu et al., 2021; Mirra et al., 2017). PCD 
is often inherited in an autosomal recessive form, however 
X-linked genes, such as RPGR and PIH1D3, have also been 
related to the disease. PCD is also a group of medically as 
well as inherently diverse disorders of cilia motility. The 
expected incidence of PCD is 1:5,000 to 1:20,000 around 
the world, but its exact prevalence is still unknown, which 
may be even higher (Mirra et al., 2017). 
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Alterations in motile cilia result in PCD. Previous 
research has indicated that abnormality in ependymal 
motile cilia of zebrafish, may affect the movement of 
cerebrospinal fluid and may result in spinal dysplasia, 
ultimately leading to scoliosis (Aebi, 2005). Scoliosis 
is a deformity of the spinal cord in the skeletally mature 
individual, having a Cobb angle of more than 12 degrees 
in the coronal plane (Aprea et al., 2021). DNAAF2 protein 
is vital in the preassembly of early dynein in the cytoplasm 
(Grimes et al., 2016), which is essential for the normal 
functioning of the motile cilia and results in adult scoliosis 
(Aebi, 2005; Grimes et al., 2016; Sun et al., 2020).

In the current study, WES and clinical data of a 
male Chinese patient diagnosed with PCD was analyzed, 
and a pathogenic variant was identified in the DNAAF2 
gene. Moreover, the effect of the identified variant 
was investigated through in silico functional analysis, 
transmission electron microscopy (TEM) analysis, and 
linked pathogenic variant of the DNAAF2 gene to male 
infertility and likely scoliosis.

MATERIALS AND METHODS

Family recruitment and clinical information 
Non-consanguineous Chinese family, comprising 
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a single male patient that was recruited to analyze the 
genetic cause of male sterility. A pedigree was drawn 
corresponding to the given data by the patient’s parents. 
A primary physical, as well as andrological investigation 
showed that patient has standard body mass index (BMI) 
and PCD symptoms. Different clinical and radiological 
tests including semen analysis, hormonal tests, karyotype 
analysis, Y chromosome microdeletion, and computed 
tomography scan (CT scan) of the chest and TEM, were 
performed and all parameters were recorded.

The patient’s fertile father was also enrolled to 
provide a positive control for semen analysis, while the 
parent’s DNA was examined for genetic analysis to check 
variant segregation in the current study. 

DNA extraction and whole exome sequencing
Hepranized blood samples were used to obtain DNA 

by utilizing the DNeasy Blood Kit (Qiagen). Targeted 
panel sequencing of samples was prepared using IDT xGen 
Exome Research Panel V1.0. A number of sequencing 
libraries were evaluated by Qubit 2.0 fluorometer (Thermo 
Fisher Scientific). Condition, as well as the size of the 
libraries, were calculated by 2100 Bioanalyzer High 
Sensitivity DNA Assay (Agilent Technologies). 

Next-generation sequencing was done using known 
libraries and was exposed to 2 × 150-bp paired-end 
sequencing on the Illumina NovaSeq platform (Illumina, 
San Diego, USA). FASTQ data were aligned with the 
human reference genome (hg19/ GRCh37) by using BWA 
v0.7.13 (Li and Durbin, 2009). Variant (missense, indels, 
and splice site) were genotyped by using recalibrated 
BAM files from GATK 4.0 and then annotated by using 
ANNOVAR (Acessed on 1st Jan 2023) (Wang et al., 2010) 
alongside numerous databases, containing populace 
frequency, HGVS variant report, phenotype as well as 
variant functional prediction. The categorization of variants 
was done as disease-causing, likely to cause disease, 
variant having an unknown significance (VUS), probably 
benign, or benign after guidelines of the American College 
of Medical Genetics (ACMG)(Richards et al., 2015). Copy 
number variants were called by DNAcopy R package 

(Acessed on 1st Jan 2023) (Venkatraman and Olshen, 2007), 
filtered and categorized according to ACMG guidelines 

(Brandt et al., 2020), and then checked manually using 
the Integrative Genomics Viewer (Thorvaldsdóttir et al., 
2013). PCD-reported genes acquired from the literature 
were utilized to classify pathogenic variants.

Sanger sequencing
Segregation of disease variants was checked through 

Sanger sequencing. To design primers, an online tool was 
used Primer3, Available at https://primer3.ut.ee (Acessed 

on 4th Jan 2023). The sequences of primers that were used 
for sequencing of the identified variant were: Forward 
primer 5′- CGGACTTCCCCTACCCTTAC -3’ and reverse 
5′-GCCTTGTTGAATTGTGCCTT-3’. 

Clustal Omega tool for the multiple sequence 
alignment. Available at https://www.ebi.ac.uk/Tools/msa/
clustalo/ (Acessed on 4th Jan 2023). The DNAAF2 protein 
sequence was analyzed for multiple sequence alignment 
with closely related DNAAF2 proteins to examine the 
conservation of the substituted amino acid. 

Sperm morphological analysis
By WHO standards (World Health Organization, 

2010, Global Recommendations on Physical Activity for 
Health), the patient had undergone routine semen analysis 
twice a week. Slides were sequentially immersed in 4% 
paraformaldehyde (PFA) for 5 min and rinsed by using 1x 
phosphate-buffered saline (PBS) twice for an additional 
5 min. Then stained in hematoxylin (Solarbio, Beijing, 
China) for 30 min, dipped in purified water three times, 
immersed in 50% acidic ethanol, and kept in water for 2 
min. Each slide was dried in 50% and 80% ethanol for 5 
min, stained for 5 min with Eosin Azure (Solarbio, Beijing, 
China), sequentially dehydrated twice in 100% ethanol 
for 5 min each and in xylene for 5 min, and covered with 
coverslips with natural balsam to be examined. At last, 300 
stained spermatozoa per sample were analyzed by optical 
microscopy (Nikon, Tokyo, Japan) at 20x.

Transmission electron microscopy (TEM)
TEM of the patient’s (II:1) sperm was done according 

to the protocol set by Sun et al. (2020). The pictures were 
taken using a charge-coupled JEOL-1200EX (JEOL, 
Japan) in Shandong Weiya Laboratory.

In silico analysis
Computational analysis of wild-type and mutant 

DNAAF2 protein consists of protein 3D modeling as well 
as protein docking. 

Protein structure prediction
I-TASSER tool (Acessed on 4th Jan 2023) was used 

for 3D protein modeling (Yang et al., 2014), and among 
predicted models, the model with the maximum confidence 
score (C-score) was chosen for further screening. For 
confirmation of the effectiveness of this predicted 
structure, the results obtained through I-TASSER (Yang 
et al., 2014) were confirmed using the Ramachandran plot 
(Acessed on 4th Jan 2023).

Molecular docking and visualization
For the study of protein interaction, the ClusPro 2.0 
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tool (Acessed on 4th Jan 2023) (Kozakov et al., 2017) was 
employed to check interactions among DNAAF2 (wild 
type as well as mutated protein) and its close functional 
interactor DNAAF4 protein, predicted by using ‘STRING’ 
(Acessed on 4th Jan 2023) (Szklarczyk et al., 2019). Protein-
protein interaction was done by using Cluspro 2.0, while 
the visualization of docked models was performed using 
various software, e.g., LigPlot + (Version 2.1) (Wallace et 
al., 1995) as well as Chimera 1.13 (Pettersen et al., 2004).

RESULTS

Infertile patient
In the current study, a single male patient belonging 

to a non-consanguineous Chinese family that has PCD was 
investigated (Fig. 1a). 

Fig. 1. (a) Family pedigree showing autosomal 
recessive mode of inheritance (b) Sangers sequencing 
chromatograms showing segregation of variant c.899C>G 
in the family in DNAAF2 gene.

The semen assessment of the patient demonstrated 
sufficient semen volume as well as concentration. All the 
sperms were immotile, i.e., 0% motility in the patient’s 
sperm was noted. Sperm morphological examination 
showed irregularities in the tail of the sperm, with various 
defects of sperm flagella, either absent, small, twisted, 
curled, or abnormal (Fig. 2). 

Hormonal (i.e., luteinizing hormone (LH), follicle-
stimulating hormone (FSH), estradiol (E2), testosterone, and 
prolactin tests), karyotype evaluation, and microdeletion 
of Y chromosome tests were normal. However a CT scan 
of the patient’s spine shows the abnormal visceral position 
at a certain angle so confirmed as scoliosis, while a chest 
CT scan also showed bronchiectasis and the situs inversus 
(Table I and Fig. 3).

Fig. 2. Sperm morphological analysis (a) Normal control 
sperm morphology (b) Patient sperm showing bent, absent, 
short and irregular sperm flagella. 

Fig. 3. Clinical features of patient. (a) Radiographic 
image of patient with bronchiectasis showing right left-
sided lumbar scoliosis (b and c) The chest high-resolution 
computed tomography (HRCT) scan of patient showing 
bronchiectasis and the situs inversus.

TEM scanning of the patient’s (II:1) sperm flagella 
showed complete axonemal defects in the outer dynamic 
arm (ODAs) as well as inner dynamic arms (IDAs) (Fig. 4).

Genetics analysis 
After a series of variant filtration steps, a novel 

homozygous variant in DNAAF2 (NM_018139.3) gene 
was found. The identified variant was homozygous 
missense c.899T>G; p.(Leu300Arg). Sanger sequencing 
confirmed that the patient was homozygous, and his 
parents were heterozygous carriers of the identified variant 
(Fig. 1b).
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Table I. Clinical features of the patient.

Characteristics Refer-
ence 
valuesa

Results

Gender - Male
Age (years)b - 39
Age at the time of 
marriageC

- 29

Weight - 73.5
BMI (kg m−2) - 24.8
Semen parameters  
Semen volume (ml) >1.5 2.3
Semen pH Alkaline Alkaline
Sperm concentration 
(106/ml)

>15 33.1

Motility (%) >40 0
Progressively motility 
(%)

>32 0

Immortality (IM) (%) 100
Sperm morphology  
Normal flagella (%)  >4 2.59
Abnormal flagella (%)  - 97.41
Short flagella (%)  - 43.0
Absent flagella (%)  - 0
Bent flagella (%)  - 22.3
Coiled flagella (%)  - 28.1
Irregular/calibre (%)  - 6.6
Head defects
Normal head (%) - 21
Abnormal head (%) - 79
Tapered head (%) - 66.7
Pyriform head (%) - 12.1
Double head (%) - 0.2

Large/Amorphous 
head (%)

- 17.3

Round head (%) - 0.9
Small head (%) - 2.8
Absent head (%) - 0
Karyotype analysis 46, XY
Hormone analysis Normal in reference range
Y chromosome 
microdeletion

No deletion was found

Other examination Chest high-resolution com-
puted tomography (HRCT) 
scan of the Patient showed 
bronchiectasis, rhinosinusitis, 
and situs inversus

Fig. 4. Transmission election microscopic examination 
revealed that ODAs were not present in the sperm flagella 
of the patients. 

Fig. 5. (a) 3D model of wild-type DNAAF2 protein (b) 
3D model of wild-type DNAAF2 protein (c) 3D model of 
superimpose structure of wild-type and mutant DNAAF2 
proteins.

Prediction of mutant protein and 3D models
3D models of DNAAF2 proteins (wild-type and 

mutant) were predicted and then superimposed to check 
the similarity of both structures. The similarity index of 
both structures was noted to be just 14.81% with many 
visible changes in the visible 3D structure (Fig. 5).

X. Li et al.
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While multiple sequence alignment confirms that 
substituted amino acid i.e. Leu300 was highly conserved 
throughout the species as in Figure 6.

Fig. 6. Multiple sequence alignment of DNAAF2 protein 
showing the conservation of substituted amino acid 
Leu300 in DNAAF2 protein of different species.

Protein–protein docking
The study of wild-type and mutant DNAAF2 with 

close interactor DNAAF4 protein has revealed remarkable 
alteration in docking sites due to identified variant (Table 
II). Wild-type DNAAF2 protein was interacting with 
DNAAF4 protein by 17 hydrogen and 6 unfavorable 
bonds though1 12 residues including, Glu378, Asp371, 
Ala379, Glu368, Glu356, Arg354, Lys305, Ser321, 
Arg319, Arg317, Gln247, Glu343, Pro241, Ser240, Asp45 
and Glu42. While in the case of mutant DNAAF2 protein, 
it interacts with close interactor DNAAF4 protein by 17 
hydrogens and 3 unfavorable bonds through 12 residues, 
including Lys531, Asp530, Glu636, His607, Ser641, 
Ser604, Pro576, Ala421, Glu419, Pro418, Glu655, His400, 
Asp401, Thr402, Gln665, Gln378.

DISCUSSION

In the present genetic study, WES combined with in 
silico functional analysis identifies homozygous variant 
DNAAF2; NM_018139.3, c.899T>G, p.(Leu300Arg) in a 
single Chinese patient. Sanger sequencing confirmed that 

the variant was segregating in the family in the autosomal 
recessive pattern. Pathogenicity of the variant was validated 
by using additional clinical testing, TEM analysis, and in 
silico functional analysis. The patient was infertile and 
diagnosed with PCD; moreover, an upright radiograph 
revealed scoliosis. Semen morphological analysis showed 
that patient sperm flagella were reduced in size, bent, and 
irregular in shape, and even absent flagella were also noted 
in the sperm of the patient, which confirms the finding of 
a previous study that Sperm flagella length is considerably 
shortened in patients having DNAAF2 variant (Aprea et 
al., 2021). 

DNAAF2 gene is present on chromosome no 14, 
and it encodes 837 amino acids long protein. DNAAF2 
protein is highly conserved throughout the species (Omran 
et al., 2008). DNAAF2 is dispersed in cell types having 
cilia, and it interrelates with some other proteins that are 
limited to the cilia functioning (Omran et al., 2008). A 
previous study (Omran et al., 2008) also confirmed the 
finding that DNAAF2 variants caused combined ODA and 
IDA flaws that result in infertility in humans. More studies 
also recognized that pathogenic variants in the DNAAF4 
and DNAAF2 genes in individuals have flaws in the ODA 
and IDA assembly, situs inversus, and PCD (Beiras et al., 
2018; Mitchison et al., 2012; Sun et al., 2020).

It has been documented that DNAAF2 is mainly 
involved in the preassembly of dynein in the cytoplasm, 
which is important for the normal functioning of the 
motile cilia. However pathogenic variants in the DNAAF2 
result in damage of both IDAs and ODAs (Lee, 2011; Sun 
et al., 2020). 

Previously different DNAAF2 variants i.e., c.564dupG, 
c.1160A>G, c.31delG, c.C156A, c.822del, c.998C>T, 
c.1891G>A, c.2027_2028delCT, c.1199_1214dup16, 
c.177_178insA, c.1555delG, c.1901T>C, c.491T>C, 
c.472G>T, c.23C>A and c.26C>A, have been documented

Table II. Protein-protein interaction of wild-type and mutant DNAAF2 protein with close interactor DNAAF4 
protein.

Interacting Protein Interacting residues in DNAAF2 
protein

Interacting residues in close interactor 
DNAAF4 protein

Type of interacting 
bonds

Wild-type DNAAF2 protein 
+ Close interactor DNAAF4 
protein

Glu378,Asp371,Ala379,Glu368, 
Glu356,Arg354,Lys305,Ser321, 
Arg319,Arg317,Gln247,Glu343, 
Pro241,Ser240,Asp45, Glu42

Phe220,Glu217,Asn215, 
Lys198,Lys194,Ala161,Glu170,-
Glu145,Asn150, Asp146,Lys93,Arg100, 
Asn218,Glu116,Ala121, Ar-
g123,Ser131,Lys127, Glu139

17 hydrogen bonds 
and 6 salt bridges

Mutant DNAAF2 protein + 
Close interactor DNAAF4 
protein

Lys531,Asp530,Glu636,His607, 
Ser641,Ser604,Pro576,Ala421, 
Glu419,Pro418,Glu655,His400, 
Asp401,Thr402,Gln665,Gln378

Asp405,Thr374,Lys408, 
Lys299,Arg371,Lys367, As-
p295,Lys336,Lys338, Asn274,Arg271,A-
la267, Ile240,Arg245,Ser237, Glu222

18 hydrogen bonds 
and 3 salt bridges
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to cause PCD in different ethnicities of the world including 
Dutch and Chinese (Alhathal et al., 2020; Beiras et al., 
2018; Blanchon et al., 2020; Emiralioğlu et al., 2020; Paff 
et al., 2018; Sun et al., 2020; Zhu et al., 2018).

As for Chinese children, DNAFF2 gene variants are 
sporadic. As Guan et al. (2021) reported in 81 Chinese 
children, the genes with the highest incidence of variants 
that caused PCD were DNAH11, followed by HYDIN, 
DNAH5, CCDC39, DNAH1, and CCNO; no DNAAF2 gene 
variant was detected (Guan et al., 2021). In Chinese adult 
patients, Sun et al. (2020) have identified two compound 
heterozygous DNAAF2 gene variants i.e. c.156C>A; 
p.(Tyr52Term) and c.26C>A; p.(Ser9Term) in them, which 
lead to the defect of ODAs and IDAs resulting in PCD 
with the manifestation of male infertility (Sun et al., 2020) 
similar finding was also found in our patient. Recently, Lu et 
al. (2021) found two heterozygous variants i.e., c.491T>C; 
p.(Leu164Pro) and c.822del; p.(Ala275Profs*10) in 
two females having major phenotypes of PCD, sinusitis 
bronchiectasis, and infertility, besides, the one with 
c.491T>C variant also had scoliosis (Lu et al., 2021).

PCD is a genetic ciliopathic defect which is caused 
due abnormality and failure of the motile cilia functioning 
(Lucas et al., 2020). Cilia in different organs may include, 
i.e. sperm, embryonic node, and ependymal cells (Lucas 
et al., 2020).

Different PCD-causing genes of the DNAAF 
family, including DNAAF2 are documented to affect the 
preassembly of both ODA and IDA (Lucas et al., 2020). 
As directed by the TEM scanning in the current study, 
the ultrastructure of the ODAs and IDAs of the ppatient’s 
(II:1) sperm flagella appeared disturbed as compared to 
the normal ultra-structural prearrangement of control’ (I:1) 
sperm flagella (Omran et al., 2008). 

These results are also comparable with results 
documented by Omran et al. (2008) who exhibited that 
male mutant fish showed abnormality in sperm motility 
resulting in infertility (Omran et al., 2008). The variation 
in the DNAAF genes that encode the dynein subunits or 
the components essential for the assembly, transport, 
or docking of axonemal dyneins, results in different 
developmental disorders (Omran et al., 2008).

CONCLUSION

A current genetic study identified a homozygous 
variant NM_018139.3, c.899T>G, p.(Leu300Arg) in the 
DNAAF2 gene, which results in infertility in a single 
Chinese male patient. TEM analysis found that semen 
flagella showed defects in the outer dynamic arm (ODAs) 
and inner dynamic arms (IDAs). Sperm morphological 
analysis also showed abnormal, bent, coiled, and short-size 

flagella. This study will also assist in genetic counselling 
of Chinese families which are at risk of PCD.
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